0-2 Guided Notes

Operations with Complex Numbers

Objectives:

- 1. Perform operations with pure imaginary numbers and complex numbers.
- 2. Use complex conjugates to write quotients of complex numbers in standard form.

Aug 18-6:20 PM

The maginaly i is defined as the principal square root of -1 and can be written as:

$$\left(v = \sqrt{-1} \right)$$

KEY CONCEPTS

$$i = i$$
 $i = i$
 $i =$

Aug 18-6:21 PM

C. $i^{200} = (1)$ $\frac{4\sqrt{18}}{16}$ d. $i^{-/8}$

101-1

COMPLEX NUMBERS

Aug 18-6:23 PM

ADDING, SUBTRACTING, MULTIPLYING COMPLEX NUMBERS

a.) (5 - i) + (-2 + 4i)

b.) (10-2i) (3+2i) **c.)** (2-2i)(4-3i)

8-6i-8i+6i2)

8-bi-8i-b

(2-2-1)(4-3-1)

RATIONALIZE A COMPLEX EXPRESSION

RATIONALIZE A COMPLEX EXPRESSION

$$(5-2i) \div (3-2i)$$
 $3+2i$
 $9+6i+6+4+7$
 $19+4i$
 $19+4i$

Aug 18-6:24 PM

$$\frac{(29)(3-di)(4+i)}{(-4-i)(-4+i)}$$

$$= \frac{-12+8i+3i+32}{16+12}$$

$$= \frac{-10+11i}{17} = \frac{-10+17i}{17}$$

Homework

P8 #1-29 odd

Aug 25-7:34 AM